Exact L-Distance from the Limit for QuickSort Key Comparisons (Extended Abstract)

نویسندگان

  • Patrick Bindjeme
  • James Allen Fill
چکیده

Using a recursive approach, we obtain a simple exact expression for the L-distance from the limit in the classical limit theorem of Régnier (1989) for the number of key comparisons required by QuickSort. A previous study by Fill and Janson (2002) using a similar approach found that the d2-distance is of order between n−1 logn and n−1/2, and another by Neininger and Ruschendorf (2002) found that the Zolotarev ζ3-distance is of exact order n−1 logn. Our expression reveals that the L-distance is asymptotically equivalent to (2n−1 lnn).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact L^2-distance from the limit for QuickSort key comparisons (extended abstract)

Using a recursive approach, we obtain a simple exact expression for the L-distance from the limit in Régnier’s [5] classical limit theorem for the number of key comparisons required by QuickSort. A previous study by Fill and Janson [1] using a similar approach found that the d2-distance is of order between n −1 log n and n, and another by Neininger and Ruschendorf [4] found that the Zolotarev ζ...

متن کامل

Exact L 2 - Distance from the Limit for QuickSort Key Comparisons ( Extended

Using a recursive approach, we obtain a simple exact expression for the L-distance from the limit in the classical limit theorem of Régnier (1989) for the number of key comparisons required by QuickSort. A previous study by Fill and Janson (2002) using a similar approach found that the d2-distance is of order between n−1 logn and n−1/2, and another by Neininger and Ruschendorf (2002) found that...

متن کامل

Exact L-distance from the Limit for Quicksort

Using a recursive approach, we obtain a simple exact expression for the L-distance from the limit in Régnier’s [5] classical limit theorem for the number of key comparisons required by QuickSort. A previous study by Fill and Janson [1] using a similar approach found that the d2-distance is of order between n −1 logn and n−1/2, and another by Neininger and Ruschendorf [4] found that the Zolotare...

متن کامل

On a multivariate contraction method for random recursive structures with applications to Quicksort

The contraction method for recursive algorithms is extended to the multivariate analysis of vectors of parameters of recursive structures and algorithms. We prove a general multivariate limit law which also leads to an approach to asymptotic covariances and correlations of the parameters. As an application the asymptotic correlations and a bivariate limit law for the number of key comparisons a...

متن کامل

A note on the quicksort asymptotics

In a recent paper, Bindjeme and Fill obtained a surprisingly easy exact formula for the L2-distance of the (normalized) number of comparisons of Quicksort under the uniform model to its limit. Shortly afterwards, Neininger proved a central limit theorem for the error. As a consequence, he obtained the asymptotics of the L3-distance. In this short note, we use the moment transfer approach to re-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012